A matrix Rodrigues formula for classical orthogonal polynomials in two variables
نویسندگان
چکیده
منابع مشابه
A matrix Rodrigues formula for classical orthogonal polynomials in two variables
Classical orthogonal polynomials in one variable can be characterized as the only orthogonal polynomials satisfying a Rodrigues formula. In this paper, using the second kind Kronecker power of a matrix, a Rodrigues formula is introduced for classical orthogonal polynomials in two variables.
متن کاملRodrigues Type Formula for Orthogonal Polynomials on the Unit Ball
For a class of weight functions invariant under reflection groups on the unit ball, a family of orthogonal polynomials is defined via a Rodrigues type formula using the Dunkl operators. Their properties and their relation with several other bases are explored.
متن کاملA Rodrigues-type formula for Gegenbauer matrix polynomials
This paper centers on the derivation of a Rodrigues-type formula for Gegenbauer matrix polynomial. A connection between Gegenbauer and Jacobi matrix polynomials is given.
متن کاملOrthogonal matrix polynomials, scalar-type Rodrigues' formulas and Pearson equations
Some families of orthogonal matrix polynomials satisfying second order differential equations with coefficients independent of n have recently been introduced (see [DG1]). An important difference with the scalar classical families of Jacobi, Laguerre and Hermite, is that these matrix families do not satisfy scalar type Rodrigues’ formulas of the type (ΦnW )W, where Φ is a matrix polynomial of d...
متن کاملThe Complementary Polynomials and the Rodrigues Operator of Classical Orthogonal Polynomials
From the Rodrigues representation of polynomial eigenfunctions of a second order linear hypergeometric-type differential (difference or q-difference) operator, complementary polynomials for classical orthogonal polynomials are constructed using a straightforward method. Thus a generating function in a closed form is obtained. For the complementary polynomials we present a second order linear hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2009
ISSN: 0021-9045
DOI: 10.1016/j.jat.2008.04.018